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A B S T R A C T

Allostasis, or stability through change, has most often been linked with challenges to homeostasis, in which
repeated challenges or stressors produce sufficient allostatic load to generate an allostatic state that can ulti-
mately lead to a disease state. The present review argues that the impact of stress on drug addiction fits with an
allostatic model and represents a challenge to brain circuit regulatory mechanisms that underlie the emotional
state of the animal. The central thesis is that stress leads to changes in corticotropin-releasing factor in the brain
that impact addiction. Stress is further argued to impact all three stages of the addiction cycle—binge/in-
toxication, withdrawal/negative affect, and preoccupation/anticipation—exposing the animal to an emotional al-
lostatic load and allostatic state that forms the growing motivational pathology of addiction. Viewing addiction
as an allostatic mechanism provides key insights into the ways in which dysregulated neurocircuitry that is
involved in basic motivational systems can transition to pathophysiology.

1. Introduction

Our overall hypothesis is that drug addiction fits with an allostatic
model and represents a challenge to brain circuits that underlie reg-
ulatory mechanisms of the state of the animal. The central thesis is that
stress leads to changes in corticotropin-releasing factor (CRF) in the
brain that impact addiction. In the context of addiction, allostatic me-
chanisms have been hypothesized to be involved in maintaining a
dysregulated emotional system in the face of the growing motivational
pathology of addiction (Koob and Le Moal, 2001). As with other chronic
physiological disorders, such as high blood pressure, drug addiction
worsens over time, is subject to significant environmental influences,
and leaves a residual neuroadaptive trace that allows rapid relapse even
months and years after detoxification and abstinence. The present re-
view provides a confluence of seemingly disparate reward and stress
interactions that integrate the ways in which stress can jumpstart the
allostatic process of addiction via the classic hypothalamic-pituitary-
adrenal (HPA) axis and more importantly drive the brain pathways that
mediate hyperkatifeia or hyperemotional pain. Finally, we argue that
the dysregulation of brain-neuroendocrine feedback in the stress axis
perpetuates addiction in protracted abstinence.

1.1. Drug addiction

Drug addiction can be defined as a compulsion to seek and take a
drug, loss of control in limiting intake, and the emergence of a negative
emotional state when access to the drug is prevented. A heuristic fra-
mework for addiction consists of a three-stage cycle—binge/intoxication,
withdrawal/negative affect, and preoccupation/anticipation—that re-
presents dysregulation in three functional domains (incentive salience/
habits, negative emotional states, and executive function, respectively)
and is mediated by three major neurocircuitry elements (basal ganglia,
extended amygdala, and prefrontal cortex, respectively). Excessive drug
intake in the binge/intoxication stage drives the allostatic process, with
the three stages feeding into each other, becoming more intense, and
ultimately leading to the pathological state known as addiction (Koob
and Le Moal, 1997; Fig. 1). Subsequently, the termination of drug in-
take inevitably leads to the negative emotional states of acute and
protracted withdrawal in the withdrawal/negative affect stage, which
generates a second motivational drive from negative reinforcement.
Negative reinforcement is defined as the process by which the removal
of an aversive stimulus (or an aversive, negative emotional state of
withdrawal in the case of addiction) increases the probability of a re-
sponse. Protracted abstinence incorporates residual elements of nega-
tive emotional states and cue and contextual craving that forms the
basis of the preoccupation/anticipation stage.
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1.2. Allostasis

The neurobiologist Peter Sterling and epidemiologist James Eyer
hypothesized the physiological construct of allostasis to explain the
basis of vulnerability in human mortality and pathophysiology (Sterling
and Eyer, 1988). Allostasis can be defined as “the process by which a
state of internal, physiological equilibrium is maintained by an or-
ganism in response to actual or perceived environmental and psycho-
logical stressors” (Webster’s Ninth New Collegiate Dictionary, 1984). In
contrast to homeostasis, allostasis involves a feed-forward mechanism
instead of a negative feedback mechanism that characterizes home-
ostasis and has often been described as “stability through change”
(Sterling and Eyer, 1988). The advantage of a feed-forward mechanism
is that it allows the fine matching of resources to needs through the
continuous reevaluation of needs and continuous readjustment of all
parameters toward new set points.

However, when an organism is repeatedly challenged, the ability to
quickly mobilize resources and use feed-forward mechanisms can lead

to an allostatic state and an ultimate cost to the individual that is known
as allostatic load (McEwen et al., 1998). An allostatic state can be de-
fined as a state of chronic deviation of the regulatory system from its
normal (homeostatic) operating level (Koob and Le Moal, 2001). Allo-
static load can be defined as the long-term cost of allostasis that accu-
mulates over time and reflects the accumulation of damage that can
lead to pathological states. Allostatic load results from repeated de-
viations from homeostasis that take the form of changes in set points
that require increasing amounts of energy to defend and ultimately
reach the level of pathology (McEwen, 2000). The allostatic state can
thus be considered an intermediate stage in the allostatic process (Koob
and Le Moal, 2001), which may be a reflection of allostatic load but
may also have some relevance to the ways in which psychiatric diseases
develop a progressively pathological phenotype (i.e., allostatic state) as
the allostatic load grows larger.

One advantage of an allostatic change rather than a homeostatic
change in physiology is the existence of a feed-forward system that is in
place for responses to rapid, anticipated challenges (Schulkin et al.,

Fig. 1. Conceptual framework for the neurobiological basis of addiction. In the binge/intoxication stage, reinforcing effects of drugs may engage neurocircuits of the
basal ganglia (blue structures). Reward neurotransmitter activation and associative mechanisms engage the nucleus accumbens shell and core and then stimulus-
response habits engage the dorsal striatum. Two major neurotransmitters that mediate the rewarding effects of drugs of abuse are dopamine and opioid peptides. In
the withdrawal/negative affect stage, the negative emotional state of withdrawal may engage activation of the extended amygdala (red structures). The extended
amygdala is composed of several basal forebrain structures, including the bed nucleus of the stria terminalis, central nucleus of the amygdala, and possibly a
transition zone in the medial portion (or shell) of the nucleus accumbens. Major neurotransmitters in the extended amygdala that are hypothesized to function in
negative reinforcement are corticotropin-releasing factor, norepinephrine, and dynorphin. There are major projections from the extended amygdala to the hy-
pothalamus and brainstem. The preoccupation/anticipation (craving) stage involves neurocircuitry of the cortex and allocortex (green structures). The processing of
conditioned reinforcement involves the basolateral amygdala, and the processing of contextual information involves the hippocampus. Executive control depends on
the prefrontal cortex and includes the representation of contingencies, the representation of outcomes, and their value and subjective states (i.e., craving and,
presumably, feelings) that are associated with drugs. The subjective effects, termed “drug craving” in humans, involve activation of the orbital and anterior cingulate
cortices and temporal lobe, including the amygdala. A major neurotransmitter that is involved in the craving stage is glutamate that is localized in pathways from
frontal regions and the basolateral amygdala that project to the ventral striatum. ACC, anterior cingulate cortex; BNST, bed nucleus of the stria terminalis; CeA,
central nucleus of the amygdala; DS, dorsal striatum; dlPFC, dorsolateral prefrontal cortex; GP, globus pallidus; HPC, hippocampus; NAC, nucleus accumbens; OFC,
orbitofrontal cortex; Thal, thalamus; vlPFC, ventrolateral prefrontal cortex; vmPFC, ventromedial prefrontal cortex. [Modified from Koob and Volkow, 2010].

G.F. Koob, J. Schulkin Neuroscience and Biobehavioral Reviews 106 (2019) 245–262

246



1994; Schulkin, 2017). However, the same feed-forward system that
allows rapid responses to environmental challenges becomes the
driving force for allostatic states, allostatic load, and ultimately pa-
thology if adequate time or resources are unavailable to shut off the
response. Thus, for example, an acute elevation of blood pressure is
“appropriate” in an allostasis model to meet the environmental demand
of acute arousal, but chronic blood pressure elevations under conditions
of chronic stress may address the chronic environmental demand but is
certainly not healthy (Sterling and Eyer, 1988).

We argue below that engagement in excessive drug seeking and
taking results in the repeated hyperactivation of reward function by
drugs of abuse, facilitated by acute stress mechanisms, in turn leading
to attempts of the brain via molecular, cellular, and neurocircuitry
processes to maintain stability but at a cost (i.e., allostasis). Allostatic
mechanisms have been hypothesized to be involved in maintaining a
functional motivational system that has relevance to the pathology of
addiction (Koob and Le Moal, 2001). The development of a negative
emotional state that occurs during acute withdrawal and persists into
protracted abstinence has been defined as an allostatic state (Koob and
Le Moal, 2008). Such a state has been hypothesized to involve both
decreases in reward function and increases in stress function, both of
which can contribute to a negative emotional state in humans, defined
as irritability, physical pain, emotional pain, malaise, dysphoria, alex-
ithymia, and the loss of motivation for natural rewards (i.e., hyperka-
tifeia or a hypernegative emotional state; Shurman et al., 2010).

2. Binge/Intoxication stage: reward, glucocorticoids, and incentive
salience

2.1. Hypothesis

The binge/intoxication stage of the addiction cycle is characterized
by engagement in drug seeking, incentive salience, and drug taking that
progresses to compulsive-like responding and major changes in cortico-
striatal-pallidal-thalamic circuits that encode pathological habits (Belin
et al., 2013; Everitt and Robbins, 2005). Stress can be rewarding in
small or intense doses (Wand et al., 2007; Robinson, 1985), possibly
mediated by glucocorticoids that act on brain reward systems. Our
hypothesis is that in the binge/intoxication stage, excessive drug use can
initiate neuroadaptations that feed allostasis via activation of the HPA
axis to facilitate reward and then subsequently via the sensitization of
extrahypothalamic CRF systems in the extended amygdala to facililate
incentive salience.

2.2. Reward and stress: the two faces of Janus

Reward and stress are intimately linked. Some levels of stress can
actually be rewarding in the sense that they are sought and activate
brain reward systems (Wand et al., 2007; Robinson, 1985), and excess
reward can lead to stress (Carlezon et al., 2000). Janus was the god of
doors, passages, and transitions, and his two faces look to the future and
to the past. Reward and stress represent different components of tran-
sitions in our brain emotional systems that lead to and perpetuate ad-
diction.

2.3. Glucocorticoids facilitate drug seeking

For example, many studies demonstrate that rats with higher levels
of corticosterone and CRF are more likely to self-administer cocaine,
heroin, and amphetamines (Piazza et al., 1989, 1993; Erb et al., 1996),
and corticosterone is self-administered by rats (Deroche et al., 1993;
Piazza et al., 1993; Fig. 2). Thus, an early allostatic change occurs in the
activity of elements of the reward system to facilitate the function of the
mesolimbic dopamine incentive salience system and promote excessive
drug seeking.

2.4. Glucocorticoids and CRF in the paraventricular nucleus of the
hypothalamus, amygdala, bed nucleus of the stria terminalis, and prefrontal
cortex

A classic physiological response to stress is activation of the HPA
axis (Selye, 1976). Here, a variety of pathways, presumably conveying
external or internal challenges to homeostasis, activate CRF-expressing
neurons in the paraventricular nucleus of the hypothalamus, and CRF is
released into the portal system and activates the release of ACTH from
the pituitary, which in turn activates the release of glucocorticoids from
the adrenal cortex. Even this initial activation of the HPA axis triggers
neuroadaptations that initiate the allostatic process.

Perhaps most critically, CRF gene expression is differentially

Fig. 2. Conceptual framework of the way in which dysregulation of the hy-
pothalamic-pituitary-adrenal axis and extrahypothalamic CRF systems can in-
fluence the binge/intoxication stage of the addiction cycle to drive allostasis in
addiction. Here, the activation of glucocorticoids (bottom) facilitates activity of
the mesolimbic dopamine system to drive incentive salience. CRF in the nucleus
accumbens can facilitate incentive salience. One hypothesis is that CRF neurons
in the shell of the nucleus accumbens are sensitized with repeated adminis-
tration of glucocorticoids, similar to those in the central nucleus of the amyg-
dala and bed nucleus of the stria terminalis, but this hypothesis remains to be
tested.
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regulated in the brain by glucocorticoid hormones (Swanson and
Simmons, 1989; Imaki et al., 1991; Tanimura and Watts, 1998). In the
parvocellular region of the paraventricular nucleus of the hypotha-
lamus, glucocorticoid activation decreases CRF gene expression. Sev-
eral studies have shown that corticosterone can facilitate the induction
of CRF gene expression in several brain regions. These regions include
the central nucleus of the amygdala, bed nucleus of the stria terminalis,
and infralimbic cortex (Gray et al., 2016; Makino et al., 1994a,b; Watts
and Sanchez-Watts, 1995; Swanson and Simmons, 1989; Shepard et al.,
2000; Thompson et al., 2004; Kolber et al., 2008; Merali et al., 2008).
Notably, although the overall effect of glucocorticoids is to inhibit the
paraventricular nucleus of the hypothalamus, there are also neuronal
populations within the paraventricular nucleus of the hypothalamus
that project to the brainstem that are not inhibited by glucocorticoids,
and some are actually enhanced (Swanson and Simmons, 1989; Watts
and Sanchez-Watts, 1995; Makino et al., 1994a,b).

In an elegant demonstration of this differential interaction of glu-
cocorticoids with hypothalamic and extrahypothalamic CRF, Cook
(2004) found a significant relationship between cortisol and CRF in the
amygdala in sheep in response to acute and repeated predator stress.
With a single exposure to a dog, sheep exhibited a biphasic CRF re-
sponse in the amygdala as measured by microdialysis. There was an
initial rapid increase in CRF levels that decreased quickly and was a
direct response to the dog. This was followed by a slower rising cortisol
response that was paralleled by a second CRF peak, smaller and more
prolonged than the first (Cook, 2004; Fig. 3). The first CRF response
was cortisol-independent and part of the initial fear response to the
stressor, whereas the second response was a cortisol-dependent eleva-
tion of CRF that perhaps sustained the fear state and related behavior
during and after the presence of the threat. The second response was
mimicked by cortisol administration in non-stressed animals. Further-
more, following repeated exposure to a dog, sensitization of the CRF
system (i.e., an increase in CRF release) in the amygdala was found by

giving a novel footshock stressor to the sheep (Cook, 2004).
Thus, the induction of CRF gene expression in the amygdala and bed

nucleus of the stria terminalis by glucocorticoid hormones may drive
early involvement in drug-seeking behaviors. For example, CRF infu-
sions in the lateral ventricle facilitated amphetamine-induced self-ad-
ministration (Sarnyai et al., 1993). Corticosterone levels are known to
influence the expression of amphetamine self-administration (Piazza
et al., 1991; Cador et al., 1993). Systemic injections of corticosterone
and stressful events increase the likelihood of amphetamine self-ad-
ministration (Maccari et al., 1991) via the activation of glucocorticoid
receptor sites (Steckler and Holsboer, 2001), which increase both cor-
ticosterone and central CRF (Heinrichs et al., 1995). In fact, ampheta-
mine increases CRF in such regions as the nucleus accumbens (Cadet
et al., 2014).

2.5. Corticotropin-releasing factor and incentive salience

Neuropeptides, such as CRF, can increase incentive salience (Pecina
et al., 2006; Merali et al., 2001, 2003, 2008; Dallman and Bhatnagar,
2000; Dallman et al., 2003), consistent with the involvement of CRF in
attentional responses to both external and internal events (Pecina et al.,
2006; Dallman et al., 2003). Indeed, rats can be trained to associate a
sound with the availability of sucrose pellets if they press a lever
(Pecina et al., 2006; Berridge and Robinson, 1998). In these studies, an
injection of CRF in the nucleus accumbens increased cue-triggered lever
pressing for sucrose pellets (Pecina et al., 2006; Fig. 4). This can be
interpreted as an ability of CRF to increase the salience of external cues
and the motivation of the rats to respond (or diminished motivation
when overly expressed; e.g., Bryce and Floresco, 2016).

Regions of the nucleus accumbens are critical in appetitive beha-
viors (Berridge, 2004). These regions contain both glucocorticoid and
CRF receptors (e.g., Lim et al., 2005). An intracranial infusion of CRF in
the nucleus accumbens shell can be visualized with a Fos plume map

Fig. 3. Stress induces CRF release in the paraventricular nucleus of the hypothalamus (PVN) and both CRF and γ-aminobutyric acid (GABA) release in the amygdala.
With and without saline microinjections, CRF (top left) showed a single peak in response to predator stress in the PVN and (top right) two peaks in the amygdala,
whereas venous cortisol changes showed a single large peak following the stress application. (Bottom) GABA showed two peaks that were similar in time to the
changes in CRF in the amygdala. Data were obtained from animals that were either untreated in the first stressor exposure (n= 15) or saline-treated in the first stress
exposure (n = 5). The data are expressed as mean ± SEM. [Modified with permission from Cook, 2004].
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that localizes the magnification effect of the CRF microinjection (Pecina
et al., 2006). One way to understand appetitive behaviors is that one
function of glucocorticoids is to magnify the effects of CRF with regard
to increases in attention to objects and their potential value. This may
be a particularly important aspect of the release of CRF when an object
is unfamiliar or uncertain, as well as if it is dangerous (Habib et al.,
2000; Kalin et al., 1998).

3. Withdrawal/negative affect stage: opponent process and
negative reinforcement

3.1. Hypothesis

Repeated withdrawal from drugs of abuse in humans in the with-
drawal/negative affect stage is defined by the presence of both physical
signs and motivational signs of withdrawal, such as chronic irritability,
physical pain, emotional pain (i.e., hyperkatifeia; Shurman et al.,
2010), malaise, dysphoria, alexithymia, sleep disturbances, and the loss
of motivation for natural rewards. The hypothesis here is that allostatic
changes in the stress axis, notably activation of the HPA axis, with
subsequent blunting of the HPA axis and sensitization of extra-
hypothalamic CRF, are further exaggerated by repeated binge-with-
drawal cycles of drug taking, such that progressively greater negative
emotional states are generated that drive negative reinforcement.

3.2. Opponent process and negative reinforcement

Addiction can be considered the pathophysiology of motivation or
the “hijacking” of motivational systems. Motivation is a construct that
can be defined as “a state that varies with arousal and guides behavior
in relationship to changes in the environment. The environment can be
external (incentives) or internal (central motive states or drives), and
such motivation or motivational states are not constants and vary over
time” (Koob et al., 2010). The construct of motivation in addiction was
intimately linked with temporal changes in hedonic, affective, or
emotional states by the opponent-process theory of motivation by
Solomon and Corbit (1974). Here, the rewarding effects of drugs, pos-
sibly facilitated by initial activation of the HPA axis (see Fig. 2) are
followed by a dysphoric-like state that drives negative reinforcement, in
which the motivation for drug seeking involves an attempt to relieve or
remove the negative emotional state of withdrawal (Koob and Le Moal,

1997; see above). Relevant to the allostatic perspective that is discussed
herein, the affective dynamics of opponent-process theory generate new
sources of motivation for energizing behavior.

Key evidence of negative reinforcement mechanisms that are in-
volved in the transition from drug use to compulsive-like drug use can
be found in studies of animal models of prolonged access to intravenous
drug self-administration, combined with measures of brain stimulation
reward. Prolonged exposure to cocaine self-administration produced an
elevation of reward thresholds (decrease in reward or hypohedonia)
that was not observed in rats with short access to the drug across suc-
cessive self-administration sessions (Ahmed et al., 2002). Elevations of
baseline reward thresholds temporally preceded and were highly cor-
related with the escalation of cocaine intake (Fig. 5). Showing an al-
lostatic-like phenotype, post-session elevations of reward thresholds
failed to return to baseline levels before the onset of each subsequent
self-administration session, thereby progressively deviating from con-
trol levels and paralleling a robust escalation of cocaine consumption.
Similar results have been observed with extended access to heroin
(Kenny et al., 2006) and methamphetamine (Jang et al., 2013).

Thus, the process of developing an allostatic negative emotional
state with increasing allostatic load may begin with the first challenge
to homeostasis, the massive release of reward neurotransmitters, and
(as the drug wears off) drug-opposite responses (i.e., opponent pro-
cesses). This negative emotional state, reflected by elevations of reward
thresholds, has been hypothesized to provide the driving force for an
additional source of motivation, namely negative reinforcement (Koob
and Le Moal, 1997).

Such opponent processes have long been hypothesized to occur even
with a single injection of a drug and contribute to tolerance (Siegel,
1975). In human laboratory studies, intravenous cocaine administration
produced patterns of a rapid “rush,” followed by a greater “low”
(Breiter et al., 1997; Van Dyke and Byck, 1982). Early-onset allostatic-
like elevations of reward thresholds (i.e., hypohedonia) have been ob-
served in animal models of intravenous cocaine self-administration.
Within a single session of self-administration, elevations of reward
thresholds begin rapidly and increase as cocaine exposure (i.e., self-
administration) increases (Kenny et al., 2003; Fig. 6). Similar dys-
phoria-like responses have been observed for acute opioid and alcohol
withdrawal (Liu and Schulteis, 2004; Schulteis and Liu, 2006). Both
precipitated opioid withdrawal (Liu and Schulteis, 2004) and repeated
acute spontaneous alcohol withdrawal elevated brain stimulation re-
ward thresholds, and these elevations of thresholds further increased
with repeated withdrawal experience. These findings demonstrate that
elevations of brain reward thresholds can occur even within a single
session. If cocaine self-administration persists, then the elevation of
reward thresholds never returns to baseline levels (i.e., residual hys-
teresis), thus creating a progressively greater elevation of “baseline”
reward thresholds and supporting a hedonic allostasis model of the
development of compulsive-like drug seeking that is associated with
addiction.

3.3. Neurobiological bases for negative emotional states

The observation of the development of a negative emotional state
with excessive drug use led to investigations of the neurobiological
bases for counteradaptive hedonic states. Such counteradaptive me-
chanisms were hypothesized to be mediated by two processes: within-
system neuroadaptations and between-system neuroadaptations (Koob
and Bloom, 1988). A key part of the neurocircuitry that mediates such
negative emotional states is a neuroanatomical construct termed the
“extended amygdala.” The extended amygdala is composed of the bed
nucleus of the stria terminalis, central nucleus of the amygdala, and a
transition zone in the medial subregion (shell) of the nucleus ac-
cumbens, regions that have cytoarchitectural similarities and similar
neuroanatomical connections. The extended amygdala, as an entity,
receives numerous afferents from structures that have long been

Fig. 4. Enhancement of incentive motivation by CRF, showing effects on cue-
triggered lever pressing during extinction testing caused by CRF (500 ng) and
amphetamine (20 μg) microinjections in the caudal medial nucleus accumbens
shell. Transform scores showed a direct contrast between CS+ and CS– effects
on lever pressing. CS+ effects on cue-triggered lever pressing were amplified by
CRF (500 ng) and amphetamine (20 μg) microinjections. [Taken with permis-
sion from Pecina et al., 2006].
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Fig. 5. The escalation of drug intake parallels elevations of reward thresholds (decreases in reward) for cocaine, heroin, and methamphetamine. (A) Relationship
between elevation of intracranial self-stimulation (ICSS) reward thresholds and cocaine intake escalation. (Left) Percent change from baseline response latencies (3 h
and 17–22 h after each self-administration session; first data point indicates 1 h before the first session). (Right) Percent change from baseline ICSS thresholds. *p <
0.05, compared with drug-naive and/or short-access rats (tests for simple main effects). [Taken with permission from Ahmed et al., 2002]. (B) Unlimited daily access
to heroin escalated heroin intake and decreased the excitability of brain reward systems. (Left) Heroin intake (± SEM; 20 μg per infusion) in rats during limited (1 h)
or unlimited (23 h) self-administration sessions. ***p < 0.001, main effect of access (1 or 23 h). (Right) Percent change from baseline ICSS thresholds (± SEM) in
23 h rats. Reward thresholds, assessed immediately after each daily 23 h self-administration session, became progressively more elevated as exposure to self-
administered heroin increased across sessions. *p<0.05, main effect of heroin on reward thresholds. [Taken with permission from Kenny et al., 2006]. (C) Escalation
of methamphetamine self-administration and ICSS in rats. Rats were daily allowed to receive ICSS in the lateral hypothalamus 1 h before and 3 h after intravenous
methamphetamine self-administration with either 1- or 6-h access. (Left) Methamphetamine self-administration during the first hour of each session. (Right) ICSS
measured 1 h before and 3 h after methamphetamine self-administration. *p < 0.05, **p < 0.01, ***p < 0.001, compared with session 1; #p < 0.05, compared
with LgA 3 h after. [Taken with permission from Jang et al., 2013].

G.F. Koob, J. Schulkin Neuroscience and Biobehavioral Reviews 106 (2019) 245–262

250



associated with emotion, such as the basolateral amygdala and hippo-
campus, and sends efferents to the medial part of the ventral pallidum
(part of the extrapyramidal motor system), lateral hypothalamus (part
of motivational circuitry and the expression of emotion circuitry), and
periaqueductal gray (part of fight or flight, freezing, and pain circuitry),
thus further defining the specific brain areas that interface classic
emotion-related structures with the extrapyramidal motor system
(Alheid et al., 1995). The medial part the nucleus accumbens is also a
key part of the ventral striatum and as such part of the key reward
motivational circuit that consists of cortical-striatal, pallidal, and tha-
lamic-cortical loops that are implicated in the incentive salience-habit
component of compulsive-like behavior (Haber et al., 2000; Everitt and
Robbins, 2005).

Significant evidence from both animal and human studies suggests
that the hypoactivity of reward function and increases in stress function
can occur following acute and protracted withdrawal from drugs of
abuse. For example, withdrawal from all major drugs of abuse can
produce acute elevations of reward thresholds, decreases in reward
neurotransmitter function, elevations of glucocorticoid levels, and in-
creases in the release of CRF in the central nucleus of the amygdala
(Fig. 7A,B).

Within incentive-salience/reward neurocircuitry, neurochemical
mechanisms for hypohedonic-like effects that are associated with
within-system adaptations include decreases in dopaminergic trans-
mission in the ventral striatum (nucleus accumbens) during drug
withdrawal. Withdrawal from excessive administration of most major
drugs of abuse decreases the firing of dopaminergic neurons in the
ventral tegmental area (Diana et al., 1993, 1995; Tan et al., 2009;
Grieder et al., 2012) and decreases dopamine release in the nucleus
accumbens (measured by in vivo microdialysis; Parsons and Justice,
1993; Weiss et al., 1992). Human imaging studies of individuals with
addiction during withdrawal or protracted abstinence indicate de-
creases in dopamine D2 receptors (hypothesized to reflect hypodopa-
minergic functioning), hyporesponsiveness to dopamine challenge
(Volkow et al., 2003), and hypoactivity of the orbitofrontal-infralimbic
cortex system (Volkow et al., 2003).

Multiple molecular mechanisms can be hypothesized to be engaged
to account for these within-system neuroadaptations in dopaminergic
activity within the circuitry of the incentive/reward systems and may
not directly involve activation of the brain stress systems. Such mole-
cular changes include the perturbation of intracellular signal trans-
duction pathways, including changes in G-protein functioning and
protein kinase A activity in the nucleus accumbens during the devel-
opment of compulsive drug seeking (Edwards and Koob, 2010). Such
changes in signal transduction can trigger longer-term molecular

neuroadaptations via such transcription factors as cyclic adenosine
monophosphate response element binding protein and downstream
ΔFosB, nuclear factor κB, and CDK5, which can modify gene expression
and initiate long-term plasticity (Nestler, 2005) or even structural
changes in the cytoskeleton of neurons via actions on actin (Russo et al.,
2010). Thus, within-system molecular changes may form a critical
juncture for genetic/epigenetic factors to sustain allostatic changes in
the perpetuation of negative emotional states that are hypothesized to
drive excessive drug seeking.

For the domain of between-system neuroadaptations, neurobiolo-
gical systems that are involved in arousal and stress have been hy-
pothesized to be the basis for what was originally described as “be-
tween-system neuroadaptations” (Koob and Bloom, 1988) and
contribute to negative emotional states that are associated with acute
withdrawal and protracted abstinence. The hypothesis is that these
between-system neuroadaptations are engaged to overcome the chronic
presence of the perturbing drug in an attempt to restore homeostasis
but in the process helps generate an allostatic negative emotion state.
Additionally, accumulating evidence suggests that activation of the
brain stress systems via between-system changes that are triggered by
overactivation of the brain reward systems can also feedback and de-
crease reward system function (Carlezon et al., 2000; Koob, 2015).

The neurobiological systems in the brain that constitute the brain
stress systems that are engaged in between-system neuroadaptations
during the withdrawal/negative affect stage include CRF, dynorphin,
norepinephrine, hypocretin, vasopressin, glucocorticoids, and neu-
roinflammatory factors (Fig. 7A,B). CRF plays a key role via both the
HPA axis and extrahypothalamic CRF stress systems, with a common
response of elevated ACTH, corticosterone, and amygdala CRF during
acute withdrawal (Rivier et al., 1984; Merlo-Pich et al., 1995; Koob
et al., 1994; Rasmussen et al., 2000; Olive et al., 2002; Delfs et al.,
2000; Koob, 2009; Roberto et al., 2010).

3.4. Sensitization of the HPA axis in addiction

Activation of the HPA axis may be an early dysregulation that is
associated with excessive drug taking and ultimately produces a
“kindling” or sensitization of extrahypothalamic CRF systems (Koob
and Kreek, 2007; Vendruscolo et al., 2012; Fig. 7A). Data that support a
role for CRF in mediating the negative emotional responses that are
associated with acute and protracted abstinence have largely been
generated by preclinical studies with animal models. The negative
emotional-like states that are associated with acute withdrawal and
protracted abstinence from all major drugs of abuse in animal models
can be reversed by CRF receptor antagonists (Koob, 2015).

Fig. 6. Effects of increasing exposure to co-
caine on reward thresholds during a single
session. Rats (n=11) were allowed to self-
administer 10, 20, 40, and 80 injections of
cocaine (0.25mg per injection), and in-
tracranial self-stimulation reward thresholds
were measured 15min and 2, 24, and 48 h
after the end of each intravenous cocaine self-
administration session. The horizontal dotted
line in each plot represents 100% of baseline
levels. The data are expressed as the
mean+ SEM percentage of baseline reward
thresholds. *p < 0.05, **p < 0.01, com-
pared with baseline (paired t-test); #p < 0.05,
##p < 0.01, compared with baseline (re-
peated-measures analysis of variance followed
by Fisher’s Least Significant Difference test).
[Taken with permission from Kenny et al.,
2003].
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Specifically, in animal models of alcohol dependence, in which rats
drink alcohol excessively during acute and protracted abstinence, sys-
temic injections of small-molecule CRF1 receptor antagonists blocked
the increase in alcohol intake that was associated with acute with-
drawal (Funk et al., 2007) and protracted abstinence (Gehlert et al.,
2007). A CRF receptor antagonist that was administered chronically
during the development of dependence blocked the development of
compulsive-like responding for alcohol (Roberto et al., 2010). A peptide
CRF1/CRF2 receptor antagonist, when administered directly in the
central nucleus of the amygdala, blocked alcohol self-administration in
alcohol-dependent rats (Funk et al., 2006). Cellular studies have iden-
tified the actions of CRF on γ-aminobutyric acid (GABA)ergic inter-
neurons within the central nucleus of the amygdala (Roberto et al.,
2010). CRF in the basal forebrain may also play an important role in the
development of negative emotional states that drive compulsive-like
drug seeking that is associated with cocaine, heroin, marijuana, and
nicotine.

Drug addiction, particularly alcohol use disorder, has long been
associated with dysregulation of the HPA axis, and high comorbidity is
found between alcohol use disorder and stress-associated disorders

(Boden and Fergusson, 2011; Haass-Koffler et al., 2014; Lijffijt et al.,
2014). Clinical studies have reported impairments in stress responsivity
in alcohol use disorder (Lovallo et al., 2000; O’Malley et al., 2002;
Adinoff et al., 2005). A condition known as pseudo-Cushing’s syn-
drome, manifested by high levels of corticosterone, can be observed in
individuals with alcohol use disorder (Kirkman and Nelson, 1988), but
more commonly reported is a blunted cortisol response in individuals
with alcohol use disorder. Indeed, anti-craving drugs that are used to
prevent relapse, such as opioid receptor antagonists, activate the HPA
axis, and the sensitivity to this activation is most prominent in subjects
with a strong family history of alcohol use disorder (O’Malley et al.,
2002; Wand et al., 1999; Kiefer et al., 2006).

Animal models have shown similar effects, with a blunted corti-
costerone response in rats that are made dependent using the chronic
intermittent alcohol vapor model (Richardson et al., 2008). Oral al-
cohol self-administration stimulated the HPA axis to release ACTH and
corticosterone. One hypothesis is that activation of the HPA axis can
drive neuroadaptive changes in extrahypothalamic CRF systems in the
extended amygdala, as described above (see Fig. 3). High corticosterone
increases CRF mRNA in the central nucleus of the amygdala and lateral

Fig. 7. (A) Conceptual framework of the way in which dysregulation of the hypothalamic-pituitary-adrenal axis and extrahypothalamic CRF systems can influence
the withdrawal/negative affect stage of the addiction cycle to drive allostasis in addiction. Here, the activation of glucocorticoids (bottom) inhibits the paraventricular
nucleus but drives CRF in the extended amygdala, triggering hyperkatifeia via extrahypothalamic stress systems. The activation of CRF in the central nucleus of the
amygdala and bed nucleus of the stria terminalis produces increases in hyperkatifeia-like responses in animals during acute and protracted withdrawal. (B)
Neurocircuitry relevant to allostatic changes in the extended amygdala associated with the withdrawal/negative affect stage of the addiction cycle. Neurotransmitters/
neuromodulators are listed on the left. Withdrawal/negative affect stage (red): The negative emotional state of withdrawal engages activation of the extended
amygdala. The extended amygdala is composed of several basal forebrain structures, including the bed nucleus of the stria terminalis, central nucleus of the
amygdala, and possibly the medial portion (shell) of the nucleus accumbens. Neurotransmitter systems that are engaged in the neurocircuitry of the extended
amygdala that convey negative emotional states are indicated by upward arrows, and neurotransmitter systems that may buffer negative emotional states are
indicated by downward arrows. The magnified section (blue oval) illustrates the extended amygdala in detail. A major neurotransmitter in the extended amygdala is
CRF, which projects to the brainstem where noradrenergic neurons provide a major projection reciprocally to the extended amygdala. Green/blue arrows indicate
glutamatergic projections. Acb, nucleus accumbens; ACC, anterior cingulate cortex; BLA, basolateral amygdala; BNST, bed nucleus of the stria terminalis; CeA,
central nucleus of the amygdala; CRF, corticotropin-releasing factor; DGP, dorsal globus pallidus; dlPFC, dorsolateral prefrontal cortex; NE, norepinephrine; OFC,
orbitofrontal cortex; SNc, substantia nigra pars compacta; VGP, ventral globus pallidus; vlPFC and vmPFC, ventral prefrontal cortex; VTA, ventral tegmental area.
Binge/intoxication stage (blue). Preoccupation/anticipation (craving) stage (green). [Modified with permission from Koob, 2008].
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bed nucleus of the stria terminalis and decreases CRF mRNA in the
paraventricular nucleus of the hypothalamus. Thus, an initial exposure
to high corticosterone, stimulated by moderate to heavy drinking, may
stimulate CRF expression in the central nucleus of the amygdala and
lateral bed nucleus of the stria terminalis, eventually leading to neu-
roadaptive changes, including the further sensitization of CRF activa-
tion in the extended amygdala and lower HPA function (Richardson
et al., 2008; Makino et al., 1994a, b; Fig. 8). Consistent with this hy-
pothesis, rats that were made dependent on alcohol by chronic inter-
mittent alcohol vapor exposure exhibited glucocorticoid receptor

mRNA downregulation in several stress/reward-related brain areas
during acute withdrawal. Glucocorticoid receptor upregulation was
observed during protracted alcohol abstinence. Chronic glucocorticoid
receptor blockade with mifepristone, when administered systemically
during the course of alcohol vapor exposure, prevented the escalation of
alcohol intake and blocked the increase in progressive-ratio responding
for alcohol in dependent animals (Vendruscolo et al., 2012; Fig. 9).
Chronic, systemic glucocorticoid receptor antagonist treatment also
blocked escalated and compulsive alcohol drinking during protracted
abstinence in rats with a history of alcohol dependence. These results

Fig. 8. Neuroplasticity of glucocorticoid expression in hy-
pothalamic and extrahypothalamic stress systems during stress
and alcohol dependence. (Top left) CRF mRNA hybridization
levels in the paraventricular nucleus of the hypothalamus in-
duced by corticosterone pellet (200mg) implantation. Control
rats (n=12) were obtained from the pool of rats that were
sacrificed at the same time points as the experimental group
(n=7 for each time point). The data are expressed as
mean+ SEM. *p < 0.001, vs. control. (Top right) CRF
mRNA hybridization levels in the central nucleus of the
amygdala induced by corticosterone pellet implantation over
2 weeks. Control rats (n=12) were obtained from the pool of
rats that were sacrificed at the same time points as the ex-
perimental groups (n=7 for each time point). The data are
expressed as mean+ SEM. *p < 0.01, **p < 0.001, vs.
control. (Bottom left) CRF mRNA signal in the paraventricular
nucleus of the hypothalamus (PVN) and group means of
transcript optical density (OD; arbitrary units of signal in-
tensity corrected for background) in the parvocellular portion
of the PVN (pPVN) in alcohol-naive (n=6), nondependent
(n=10), and dependent (n=13) animals 6–8 h into with-
drawal from alcohol vapors (2–4 PM). CRF mRNA significantly
decreased in the pPVN in dependent animals compared with
alcohol-naive controls (*p= 0.01) but not compared with
nondependent animals. The groups did not differ in CRF
mRNA levels in the magnocellular division of the PVN (mPVN;
data not shown). The data are expressed as mean+ SEM.
(Bottom right) In alcohol-dependent rats (n=8), the levels of
CRF mRNA, normalized to cyclophilin A, were significantly
increased in punches of the central nucleus of the amygdala
(*p < 0.05) compared with naive controls (n=11), mea-
sured by quantitative real-time polymerase chain reaction.

Top left and right reproduced from Makino et al., 1994a. Bottom left reproduced from Richardson et al., 2008. Bottom right reproduced from Roberto et al., 2010.

Fig. 9. Chronic glucocorticoid receptor
blockade by mifepristone prevented the esca-
lation of alcohol intake and motivation for al-
cohol in vapor-exposed animals. (Top)
Timeline of the experiment. Dependent and
nondependent rats were implanted with pellets
for the chronic release of the glucocorticoid
receptor antagonist mifepristone (150mg for
21 days) or placebo before exposure to alcohol
vapor. Mifepristone-treated vapor-exposed rats
did not exhibit an escalation of alcohol intake
(bottom left) or an increase in progressive-ratio
responding (bottom right) compared with pla-
cebo-treated vapor-exposed rats. Mifepristone
did not influence alcohol intake in non-
dependent rats. The data are expressed as
mean ± SEM. *p < 0.05, significant differ-
ence from mifepristone-treated vapor-exposed
rats; +p < 0.05, significant difference from
placebo-treated nondependent rats. n=9–10
per group. [Taken with permission from
Vendruscolo et al., 2012].
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suggest a critical role for glucocorticoid receptors in the development
and maintenance of alcohol dependence.

The mechanisms for the differential control of CRF transcription by
corticosteroids in the paraventricular nucleus of the hypothalamus vs.
central nucleus of the amygdala are not yet fully known. One hypoth-
esis is that tissue-specific differences in steroid receptor coactivators,
such as SRC-1, might play a role in the neuron-specific action of glu-
cocorticoids on CRF transcription (Kovacs, 2013). The SRC1α isoform is
highly expressed in the paraventricular nucleus of the hypothalamus,
whereas the central nucleus of the amygdala is enriched with SRC1ε.
This differential expression was shown to correlate with the differential
effect of corticosterone in these areas (Meijer et al., 2000).

Brain stress systems are not limited to CRF (Koob, 2015). Our hy-
pothesis is that multiple neurotransmitter systems converge on the ex-
tended amygdala to address the needs of an organism to respond to an
acute stressor but also to sustain a response to a chronic stressor (e.g.,
the cycle of repeated binge-withdrawal in addiction). In this vein, other
modulatory brain neurotransmitter systems that have pro-stress actions
also converge on the extended amygdala and include norepinephrine,
vasopressin, substance P, hypocretin (orexin), and dynorphin, all of
which may contribute to negative emotional states that are associated
with drug withdrawal or protracted abstinence (Koob, 2008). κ-Opioid
receptor agonists (administered systemically) and dynorphins (ad-
ministered intracerebrally) produce aversive-like effects in both ani-
mals and humans (Shippenberg et al., 2007; Wee and Koob, 2010;
Mucha and Herz, 1985; Pfeiffer et al., 1986) and have been hypothe-
sized to mediate negative emotional states that are associated with drug
withdrawal (Chartoff et al., 2012; Schindler et al., 2010; Land et al.,
2009; McLaughlin et al., 2003; Redila and Chavkin, 2008; Land et al.,
2008; McLaughlin et al., 2006; Knoll et al., 2007; Mague et al., 2003).
High compulsive-like drug intake that is associated with extended ac-
cess to and dependence on methamphetamine, heroin, and alcohol is
blocked by both systemic and intracerebral κ-opioid receptor antagonist
administration (Walker et al., 2010; Wee et al., 2009; Schlosburg et al.,
2013; Whitfield et al., 2015). Two sites for these actions are the shell of
the nucleus accumbens and amygdala (Nealey et al., 2011; Schlosburg
et al., 2013; Kallupi et al., 2013), suggesting a κ-opioid re-
ceptor–dynorphin contribution within the extended amygdala to ne-
gative emotional states (Chavkin and Koob, 2016). High compulsive-
like alcohol drinking in dependent rats during withdrawal can also be
blocked by a β-adrenergic receptor antagonist, α1 adrenergic receptor
antagonist, κ-opioid receptor antagonist, vasopressin 1b receptor an-
tagonist, glucocorticoid receptor antagonist, and neuroimmune system
antagonist (Koob, 2008, 2017). High compulsive-like heroin intake in
the model of extended-access self-administration was blocked by a
substance P antagonist and hypocretin-2 antagonist (Barbier et al.,
2013; Schmeichel et al., 2015; Fig. 7B).

Similarly, one may hypothesize that the vulnerability to drive an
allostatic state may derive not only from the activation of pro-stress
neurotransmitter systems but also from anti-stress neurotransmitter
systems. Anti-stress neurotransmitter systems may serve as neuroa-
daptive buffers to the pro-stress actions that are described above.
Neurotransmitter/neuromodulator systems that are implicated in anti-
stress actions include neuropeptide Y (NPY), nociceptin, and en-
docannabinoids. Neuropeptide Y has powerful orexigenic and anxio-
lytic effects and has been hypothesized to act in opposition to the ac-
tions of CRF in addiction (Heilig and Koob, 2007). The activation of
NPY in the central nucleus of the amygdala has opposite effects to CRF,
in which NPY, injected into the brain, blocks the increase in GABA
release in the central nucleus of the amygdala that is produced by al-
cohol, blocks high compulsive-like alcohol administration, and blocks
the transition to excessive drinking with the development of depen-
dence (Gilpin et al., 2003,2008,2011; Thorsell et al., 2005a,b, 2007).
Nociceptin (also known as orphanin FQ) has anti-stress-like effects in
animals (Ciccocioppo et al., 2003; Martin-Fardon et al., 2010). Noci-
ceptin and synthetic NOP receptor agonists have effects on GABA

synaptic activity in the central nucleus of the amygdala that are similar
to NPY and can block high alcohol consumption in a genetically se-
lected line of rats that is known to be hypersensitive to stressors
(Economidou et al., 2008). Evidence also implicates endocannabinoids
in the regulation of affective states, in which reductions of cannabinoid
CB1 receptor signaling produce anxiogenic-like behavioral effects
(Serrano and Parsons, 2011). Blocking endocannabinoid clearance can
also block some drug-seeking behaviors (Scherma et al., 2008;
Adamczyk et al., 2009; Forget et al., 2009). Thus, endocannabinoids
may play a protective role in preventing drug dependence by buffering
the stress activation that is associated with withdrawal (see Fig. 7B).

Neuropharmacological studies that systemically administered neu-
rotransmitter-modulating agents found that drugs that have either anti-
stress or antidepressant-like activity in other animal models blocked the
withdrawal-induced elevations of reward thresholds for most major
drugs of abuse (Koob, 2017). Using nicotine as an example, a nicotinic
receptor partial agonist, CRF1 receptor antagonist (Bruijnzeel et al.,
2007, 2009, 2012; Marcinkiewcz et al., 2009), vasopressin 1b receptor
antagonist (Qi et al., 2015), and α1 noradrenergic receptor antagonist
(Bruijnzeel et al., 2010) blocked the elevations of reward thresholds
that were produced by withdrawal from chronic high-dose nicotine
exposure. A CRF1 receptor antagonist, injected systemically, also re-
versed the elevations of reward thresholds that were produced by al-
cohol withdrawal (Bruijnzeel et al., 2010).

In summary, a multi-determined neurocircuitry promotes the acti-
vation of pro-stress neuromodulators and, combined with a weakening
or inadequate anti-stress response, leads to negative emotional states
that set up an allostatic hedonic load that drives negative reinforce-
ment. Under this framework, a strong multi-determined buffer, if acti-
vated and sufficient to allow the pro-stress systems to recover, may help
return the organism to homeostasis.

3.5. The pain of addiction: hyperkatifeia

In humans, withdrawal from opioids and alcohol can lower pain
thresholds and exacerbate pain. Heightened pain perception has long
been observed in individuals with addiction to opioids (Ho and Dole,
1979). Patients who are on methadone maintenance have low pain
tolerance (Doverty et al., 2001), and pain is one of the main triggers of
relapse to addiction in methadone-maintained individuals. Former
opioid-addicted individuals who were maintained on either methadone
or the opioid receptor partial agonist buprenorphine presented an in-
crease in sensitivity to cold pressor pain (Compton et al., 2001). Others
have found that a hyperalgesic state can persist for up to 5 months in
abstinent individuals with opioid addiction, and addicted individuals
with more pain sensitivity also exhibited greater cue-induced craving at
this time point (Ren et al., 2009). Subjects who were in acute with-
drawal (24–72 h) from opioids or protracted abstinence (average of 30
months) exhibited decreases in pain thresholds and pain tolerance in
the ischemic pain submaximal tourniquet procedure, and these effects
were exacerbated by negative emotional states. Individuals in all groups
(i.e., nonusers, ex-users, and withdrawn users) exhibited lower pain
tolerance after viewing negative pictures compared with tolerance la-
tencies that were observed after viewing positive and neutral pictures.
Indeed, even acute opioid administration can produce hyperalgesia in
humans (Compton et al., 2003). Here, healthy non-opioid-dependent
men who were tested in an acute opioid physical dependence paradigm
exhibited the presence of hyperalgesia in response to experimental
cold-pressor pain using three different pretreatment opioid adminis-
tration protocols whereby acute physical dependence was precipitated
by naloxone (Compton et al., 2003).

Heighted pain perception has also been observed during alcohol
withdrawal. Patients who were undergoing acute withdrawal from al-
cohol exhibited greater heat pain sensitivity to a noxious thermal sti-
mulus (Jochum et al., 2010). Again, the perceived painful thermal
sensation was more intense in patients who were experiencing negative
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affective states, in which pain tolerance correlated with their scores on
the Beck Depression Inventory (Jochum et al., 2010).

In animal models, withdrawal from chronic self-administration of
opioids and alcohol produced hyperalgesia (i.e., lowered pain thresh-
olds; Egli et al., 2012). With opioids, hyperalgesia has been observed in
numerous studies (Martin et al., 1987: Tilson et al., 1973). Animals that
were allowed extended access to intravenous heroin self-administration
developed dependence and compulsive-like responding and exhibited
hyperalgesia during withdrawal (Edwards et al., 2012). Hyperalgesia
was partially blocked by systemic administration of a CRF1 receptor
antagonist (Edwards et al., 2012). More compelling, every-other-day
administration of a CRF receptor antagonist blocked the development
of escalation of heroin intake and the development of hyperalgesia
(Park et al., 2015). CRF1 receptors mediate the pronociceptive effects of
this peptide, and this relationship is mediated at least partially by the
central nucleus of the amygdala (Ji and Neugebauer, 2007; Fu and
Neugebauer, 2008). CRF1 receptors also mediate pain-related anxiety-
like behavior (Ji et al., 2007). The antinociceptive effects of CRF1 re-
ceptor antagonists have been demonstrated across several pain models,
although this class of drugs does not alter various pain-related indices
(e.g., audible or ultrasonic vocalizations or paw withdrawal thresholds)
in non-injured animals (e.g., Fu and Neugebauer, 2008).

In animal models of excessive alcohol intake and alcohol depen-
dence, early work showed that hyperalgesia was produced when an
alcohol (6.5%)-containing diet was fed continuously to male rats, and
hyperalgesia took 4 weeks to develop (Dina et al., 2000). In another,
more binge-like paradigm, feeding an alcohol diet (6.5%) in repeated
cycles of 4 days of alcohol followed by 3 days without alcohol resulted
in withdrawal-induced hyperalgesia that began at the end of one
weekly cycle and reached a maximum during the fourth cycle. This
withdrawal-induced hyperalgesia, similar to the hyperalgesia that is
induced by continuous, chronic alcohol intake, was reversibly inhibited
by intrathecal administration of an antisense oligodeoxynucleotide to
protein kinase Cε (Dina et al., 2006). Using an operant oral self-ad-
ministration model, animals that were trained to self-administer alcohol
and were made dependent escalated their intake and exhibited hyper-
algesia during withdrawal (Edwards et al., 2012). This hyperalgesia
was partially blocked by systemic administration of a CRF1 receptor
antagonist, consistent with the results that were observed with opioid-
dependent rats (see above). These results are consistent with the studies
by Neugebauer and colleagues with regard to the role of the extra-
hypothalamic CRF stress system in pain modulation.

As described above, the neural substrates that underlie allostatic
emotional changes that are seen in addiction include decreases in re-
ward function that are mediated by neurochemical changes in the
ventral striatum (molecular neuroadaptations in medium spiny neurons
and loss of function of the dopamine system) and increases in brain
stress system function that are mediated by neurochemical changes in
the extended amygdala (recruitment of CRF, dynorphin, and nor-
epinephrine; Koob, 2015). From a conceptual perspective of emotion,
links have been hypothesized to exist between the neural mechanisms
that are responsible for a hypersensitive negative emotional state
(termed “hyperkatifeia”) and opioid-induced hyperalgesia (Shurman
et al., 2010). Hyperkatifeia was defined as a greater intensity of the
constellation of negative emotional/motivational symptoms and signs
that are observed during withdrawal from drugs of abuse (derived from
the Greek “katifeia” for dejection or negative emotional state). The
hypothesis was that hyperkatifeia is more likely to occur in subjects in
whom excessive opioid use produces a break with homeostasis and less
likely to occur when the opioid is restoring homeostasis, such as in
effective pain treatment (Shurman et al., 2010).

For example, evidence suggests that the neural substrates of stress
system neuroadaptations that are associated with addiction may
overlap with substrates of emotional aspects of pain processing in such
areas as the amygdala (Neugebauer, 2007). The spino (trigemino)-
ponto-amygdaloid pathway projects from the dorsal horn of the spinal

cord to the mesencephalic parabrachial area and then to the central
nucleus of the amygdala. This pathway has been implicated in pro-
cessing emotional components of pain perception (Price, 2000; Bester
et al., 1995; Fig. 10).

Pain-responsive neurons are also abundant in the lateral part of the
central nucleus of the amygdala (Neugebauer and Li, 2002), an area
that may also be responsible for negative emotional responses to abused
drugs (Funk et al., 2006). As noted above, opioid withdrawal and al-
cohol withdrawal in animal models of compulsive-like self-adminis-
tration produce greater anxiety-like responses and hyperalgesia, both of
which are blocked by CRF receptor antagonists (Edwards et al., 2012).

Thus, one hypothesis to explain the crosstalk between opioid ad-
diction and chronic pain syndromes is that some patients may be more
prone to the development of hyperkatifeia during withdrawal. An al-
lostatic view would suggest that opioid-induced hyperalgesia and hy-
perkatifeia would be much more likely to occur during chronic opioid
administration if excessive opioids are administered. One could argue
that because of overdosing, rapid escalation (overshooting), pharma-
cokinetic variables, or genetic sensitivity, the body will react to that
perturbation with the engagement of the opponent processes of hy-
peralgesia and hyperkatifeia that are mediated by significant crosstalk
in such brain structures as the central nucleus of the amygdala. The
repeated engagement of opponent processes without time for the
system to reestablish homeostasis will engage the allostatic mechanisms
that are described above. Such a framework suggests that the mani-
festation of opioid-induced hyperalgesia has important clinical im-
plications: (i) the opioid has exceeded the amount that is effective for
pain control, and (ii) susceptible individuals are at risk for developing
hyperkatifeia, the unstable emotional and behavioral state that under-
lies addiction (Shurman et al., 2010). One test of subhypothesis (i)
above would be to chart hyperalgesic responses during postoperative
pain management and then follow up by longitudinally charting opioid
misuse postoperatively over time in a cohort of individuals who receive
opioid medications for acute postoperative pain. One could then ob-
serve whether carefully limiting opioids that are sufficient to manage
pain, by possibly utilizing a method such as patient-controlled analgesia
(MacIntyre, 2001), would minimize subsequent abuse.

Between-system changes in brain stress systems also have a genetic,
genetic-environment, even possibly epigenetic overlay. For example, at
least two single-nucleotide polymorphisms (SNPs) of the CRF1 receptor
gene (Crhr1) have been associated with binge drinking in adolescents
and excessive drinking in adult humans (Treutlein et al., 2006), sug-
gesting a mechanism for genetic and epigenetic interactions. One pos-
sibility is that such an SNP might alter gene regulation through epige-
netic processes that are related to differences in genetic sequence. For
example, specific SNP-containing intergenic transcript alleles regulate
numerous chromatin modifier genes, thus directly linking SNPs and
epigenetic regulation (Zaina et al., 2010). Here, epigenetics can be
defined as the study of mechanisms of gene regulation that are de-
pendent on chromatin architecture (Zaina et al., 2010). Several poly-
morphisms of human CRF system molecules have also been associated
with excessive alcohol use phenotypes, often in interactions with a
history of stress. One of these SNPs, rs1876831 (C allele), that showed
homozygosity was associated with heavy drinking relative to stressful
life events in adolescents (Blomeyer et al., 2008). Crhr1 SNPs also
predicted greater alcohol consumption in individuals who were already
dependent (Treutlein et al., 2006), and significant associations were
found between P3 amplitude and alcohol dependence and multiple
SNPs of the Crhr1 gene (Chen et al., 2010). The rs1876831 SNP is lo-
cated in an intron region that can potentially influence transcription of
the CRF1 receptor gene in response to stress (Schmid et al., 2010; but
see Blomeyer et al., 2008). Finally, a history of stress was shown to
produce greater increases in future alcohol intake (Blomeyer et al.,
2008; Schmid et al., 2010) and an earlier onset of drinking (Schmid
et al., 2010) in adolescents who were homozygous for the C allele of the
rs1876831 SNP of the Crhr1 gene. Adolescent carriers of the A allele of
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the rs242938 SNP of Crhr1 reported more drinking when exposed to
stress.

Genetic associations between CRF signaling and alcohol phenotypes
in humans have also been linked to genetic variants of the CRF binding
protein gene CRHBP. Here, polymorphisms of CRHBP would be hy-
pothesized to modulate the amount of CRF that is available to interact
with its receptors. Polymorphisms of CRHBP have been related to lower
electroencephalographic alpha wave power (Enoch et al., 2008), an
endophenotype of alcohol use disorder (Enoch et al., 2008; Begleiter
and Platz, 1972). CRHBP polymorphisms are also more prevalent in
individuals with alcohol use disorder with comorbid anxiety disorders
(Enoch et al., 1999). Moreover, CRHBP polymorphisms have been hy-
pothesized to impact anxiety or drinking in alcohol-dependent in-
dividuals (Haass-Koffler et al., 2016) and to be related to the severity of
stress-induced alcohol craving (Ray, 2011). Both CRHR1 and CRHBP
may coordinate to convey vulnerability. Elevations of CRHR1 mRNA
levels relative to CRHBP mRNA levels in mononuclear blood cells were
observed in individuals who carried the dual polymorphism, suggesting
that CRF1 receptor activation by CRF predominates over CRF/CRF
binding protein interactions in individuals with a high predisposition to
the development of alcohol use disorder (Ribbe et al., 2011). In a panel
of schizophrenia patients, individual CRHBP and CRHR1 SNPs together
have been shown to predict alcohol use disorder comorbidity (Ribbe
et al., 2011).

4. Preoccupation/anticipation stage: executive function, protracted
abstinence, and stress-induced reinstatement

4.1. Hypothesis

The prefrontal cortex in humans engages general function and
control at least partially via inhibitory control over the basal ganglia to
mediate impulsivity and the extended amygdala to mediate compul-
sivity. The hypothesis here is that activation of the HPA axis and ex-
trahypothalamic CRF system negatively impacts the prefrontal cortex to
impair this top-down connectivity and help feed growing allostatic
changes in the extended amygdala brain stress systems and residual
vulnerability to stress-induced relapse.

4.2. Prefrontal cortex, CRF, and top-down control

Drug addiction in humans is associated with the dysregulation of
frontal cortex function in humans in two domains: cognitive impair-
ments (including poor working memory, inattention, and impairments
in delay discounting; Volkow et al., 2011; Jentsch and Taylor, 1999)
and cue-induced craving (which activates the dorsolateral prefrontal
cortex, anterior cingulate gyrus, and medial orbitofrontal cortex;
Jasinska et al., 2014; Niendam et al., 2012). Such activation of the
reward/salience systems during acute craving episodes is further po-
tentiated in humans because of a decrease in the inhibitory function of
the prefrontal cortex (ventromedial prefrontal cortex, orbitofrontal
cortex, and cingulate cortex; Bechara et al., 1999; Johnstone et al.,
2007; Goldstein and Volkow, 2011). The interaction between the
“STOP” signal that is processed by the ventromedial prefrontal cortex
and “GO” signal that is processed by the dorsolateral prefrontal cortex
may be another source of allostatic load in protracted abstinence that is
associated with the preoccupation/anticipation stage (Johnstone et al.,
2007; Koob and Volkow, 2016; Fig. 11).

Rats exhibit high levels of CRF-expressing neurons in the cortex.
Abstinence from alcohol in rats with a history of escalation of alcohol
intake specifically recruited GABAergic (GAD67+) and CRFergic neu-
rons in the medial prefrontal cortex (George et al., 2012). These ani-
mals also exhibited working memory impairments that were associated
with excessive alcohol drinking during acute (24–72 h) but not pro-
tracted (16–68 days) abstinence. Moreover, abstinence from alcohol
was associated with a functional disconnection between the medial
prefrontal cortex and central nucleus of the amygdala but not between
the medial prefrontal cortex and nucleus accumbens, suggesting the
recruitment of a subset of GABAergic and CRFergic neurons in the
medial prefrontal cortex during withdrawal. Disconnection of the pre-
frontal cortex from the central nucleus of the amygdala pathway may
be critical for impairments in executive control over motivated beha-
vior, suggesting that the dysregulation of medial prefrontal cortex in-
terneurons may be an early index of neuroadaptation in alcohol de-
pendence (George et al., 2012).

Vulnerability to relapse is common in individuals with a history of
addiction. A key challenge is to understand the mechanisms of relapse.

Fig. 10. Pathways for the supraspinal processing of pain superimposed on key elements of addiction circuitry that are implicated in negative emotional states. Blue
structures are involved in the “fast” processing of pain via the spinothalamic tract and arrive indirectly at the amygdala. Pink structures are involved in the “fast”
processing of pain via the spinal-parabrachial-amygdala pathway and arrive directly at the amygdala. Yellow structures are involved in the “slower” cognitive
processing of pain. Addiction circuitry is composed of structures that are involved in the three stages of the addiction cycle: binge/intoxication (ventral striatum, dorsal
striatum, thalamus), withdrawal/negative affect (ventral striatum, bed nucleus of the stria terminalis, central nucleus of the amygdala; red structures), preoccupation/
anticipation (prefrontal cortex, orbitofrontal cortex, hippocampus). Notice significant overlap of the supraspinal processing of pain and addiction in the amygdala.
Modified with permission from Blackburn-Munro and Blackburn-Munro (2003) and Koob et al. (2008). ACC, anterior cingulate cortex; AMG, amygdala; BNST, bed
nucleus of the stria terminalis; DRG, dorsal root ganglion; DS, dorsal striatum; GP, globus pallidus; Hippo, hippocampus; Hyp, hypothalamus; Insula, insular cortex;
OFC, orbitofrontal cortex; PAG, periaqueductal grey; PB, parabrachial nucleus; PPC, posterior parietal cortex; S1, S2, somatosensory cortex; SMA, supplementary
motor area; Thal, thalamus; VS, ventral striatum.
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As noted above, higher levels of corticosterone may increase the sal-
ience of objects or cues that are associated with psychostimulant ad-
ministration and the sensation-seeking aspects of drug reward (Piazza
et al., 1993). Glucocorticoids feedback and drive extrahypothalamic
CRF in the extended amygdala in the withdrawal/negative affect stage,
but these allostatic changes also impact the preoccupation/anticipation
stage. Discernment of the ways in which glucocorticoids interact with
cortical CRF neurons and the resulting functional consequences remains
a challenge for future studies.

4.3. Protracted abstinence

Environmental cues and contexts play a key role in relapse. The
argument herein is that a critical component of relapse involves what
we argue is residual hyperkatifeia. Two-thirds of relapse to alcohol use
disorder can be attributed to stress (Marlatt and Gordon, 1980). A
factor analysis of Marlatt’s relapse taxonomy found that negative
emotion, including elements of anger, frustration, sadness, anxiety, and
guilt, is a key factor in relapse (Zywiak et al., 1996), and negative affect
was the leading precipitant of relapse in a large-scale replication of
Marlatt’s taxonomy (Lowman et al., 1996). Another term for the state of
stress and vulnerability to relapse, post-acute withdrawal, is protracted
abstinence, which has been defined in humans as a Hamilton Depres-
sion rating ≥8 with the following three items that are consistently
reported by subjects: depressed mood, anxiety, and guilt (Mason et al.,
1994).

During protracted abstinence, there may be residual glucocorticoid
system activation that contributes to the preoccupation/anticipation
stage. Preclinical data suggest that during protracted abstinence in rats,
after acute withdrawal (usually ≥2 weeks), glucocorticoid receptors
are upregulated. Using an animal model of compulsive-like alcohol
seeking in rats, dependent animals exhibited glucocorticoid receptor
mRNA downregulation in several stress/reward-related brain areas
during acute withdrawal and glucocorticoid receptor upregulation
during protracted alcohol abstinence (Vendruscolo et al., 2012). More
specifically, glucocorticoid receptor levels increased in the nucleus ac-
cumbens core, central nucleus of the amygdala, and ventral bed nucleus
of the stria terminalis during protracted alcohol abstinence, suggesting
receptor adaptation when alcohol exposure ceased (Fig. 11). As noted
above, a functional role for glucocorticoid receptors in alcohol depen-
dence was demonstrated by showing that chronic glucocorticoid re-
ceptor blockade during the course of alcohol vapor exposure prevented
the escalation of alcohol intake and blocked the increase in progressive-
ratio responding. However, chronic glucocorticoid receptor antagonism
also blocked escalated and compulsive alcohol drinking during pro-
tracted abstinence in rats with a history of alcohol dependence
(Vendruscolo et al., 2012). Similar effects were observed with acute
mifepristone administration during protracted abstinence in rats
(Vendruscolo et al., 2015), and mifepristone also blocked craving for
alcohol in a human laboratory study of non-treatment-seeking alcohol-
dependent individuals and decreased their drinking (Vendruscolo et al.,
2015). As noted above, escalated alcohol intake during protracted ab-
stinence may also involve glucocorticoid receptors and re-engagement
of the motivational impact of incentive salience that is observed in the
binge/intoxication stage (Piazza et al., 1989). Thus, opposite changes in
glucocorticoid receptor levels during acute alcohol withdrawal and
protracted abstinence may play a role in the sensitivity to stress/reward
and escalated alcohol intake during the three stages of alcohol use
disorder.

4.4. Stress-induced relapse

A surrogate for human stress-induced relapse in animal studies is
stress-induced reinstatement (Shaham et al., 2000). One key brain re-
gion that mediates stress-induced reinstatement in animal models ap-
pears to be the bed nucleus of the stria terminalis in the extended
amygdala, and a key neurotransmitter is central CRF (Shaham et al.,
2000). The bed nucleus of the stria terminalis is linked to CRF-related
effects on anxiety-like behavioral responses (Davis et al., 1997). CRF
receptor antagonism in the bed nucleus of the stria terminalis interferes
with footshock-induced relapse, but this does not occur when the CRF
antagonist is infused in the amygdala. Conversely, when CRF is infused
directly in the bed nucleus of the stria terminalis, cocaine self-admin-
istration increases, but this does not occur when CRF is directly infused
in the amygdala (Erb and Stewart, 1999). Thus, the bed nucleus of the
stria terminalis also appears to be linked to some of the withdrawal

Fig. 11. Conceptual framework of the way in which dysregulation of the hy-
pothalamic-pituitary-adrenal axis and extrahypothalamic CRF systems can in-
fluence the preoccupation/anticipation stage of the addiction cycle to drive al-
lostasis in addiction. Here, CRF in the prefrontal cortex in parallel with the
activation of glucocorticoid receptors by chronic dysregulation of glucocorti-
coid function (bottom) can drive an increase in craving and a decrease in in-
hibitory control that are associated with protracted abstinence. ACC, anterior
cingulate cortex; dlPFC, dorsolateral prefrontal cortex; vlPFC, ventrolateral
prefrontal cortex; vmPFC, ventromedial prefrontal cortex; OFC, orbitofrontal
cortex; DS, dorsal striatum; NAc, nucleus accumbens; GP, globus pallidus; Thal,
thalamus; BNST, bed nucleus of the stria terminalis; CeA, central nucleus of the
amygdala; HPC, hippocampus; DA, dopamine; CRF, corticotropin-releasing
factor; VTA; ventral tegmental area; ACTH, adrenocorticotropic hormone.

G.F. Koob, J. Schulkin Neuroscience and Biobehavioral Reviews 106 (2019) 245–262

257



symptoms that are experienced when individuals with a history of drug
abuse who are stressed begin to crave the drug again.

5. Allostasis in addiction as a model of psychopathology of
motivational processes

Allostatic-like changes in stress function may also apply to other
pathological states that are challenged by external and internal events.
The argument is that such allostatic changes dramatically impact the
hedonic reward systems to drive compulsive drug seeking via the
construct of negative reinforcement (Fig. 12). Severe compulsive dis-
orders, such as obsessive-compulsive disorder, are known to be asso-
ciated with compulsive-like behavior to reduce discomfort, often re-
sulting in high anxiety in the context of obsessions about fear of harm or
contamination (Hollander, 1993). Other psychiatric disorders within
the obsessive-compulsive spectrum take on characteristics of compul-
sivity and have common face validity with the phenotype of addiction
in the sense that negative emotional states can develop that appear to
drive compulsive behavior. These such disorders as kleptomania
(“Disruptive, Impulse-Control, and Conduct Disorders”), gambling dis-
order (“Substance-Related and Addictive Disorders”), and trichotillo-
mania (“Obsessive-Compulsive and Related Disorders”; American
Psychiatric Association, 2013). Similarly, elements of compulsivity can
be found in compulsive shopping, compulsive sexual behavior, com-
pulsive eating, compulsive exercise, and compulsive computer use
(Hollander and Benzaquen, 1997). Refinement of the human neu-
ropsychological and neurobiological measures using a neuroclinical
approach (Kwako and Koob, 2017) will help elucidate whether the
same neurobiological circuits that are related to emotional function that
are dysregulated in drug addiction overlap with those that are dysre-
gulated in other stress-related psychopathologies.
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