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ABSTRACT
Opioids are powerful drugs that usurp and overpower the reward function of endogenous opioids and engage dramatic
tolerance and withdrawal via molecular and neurocircuitry neuroadaptations within the same reward system. However,
they also engage the brain systems for stress and pain (somatic and emotional) while producing hyperalgesia and
hyperkatifeia, which drive pronounced drug-seeking behavior via processes of negative reinforcement. Hyperkatifeia
(derived from the Greek “katifeia” for dejection or negative emotional state) is defined as an increase in intensity of the
constellation of negative emotional or motivational signs and symptoms of withdrawal from drugs of abuse. In animal
models, repeated extended access to drugs or opioids results in negative emotion-like states, reflected by the
elevation of reward thresholds, lower pain thresholds, anxiety-like behavior, and dysphoric-like responses. Such
negative emotional states that drive negative reinforcement are hypothesized to derive from the within-system dys-
regulation of key neurochemical circuits that mediate incentive-salience and/or reward systems (dopamine, opioid
peptides) in the ventral striatum and from the between-system recruitment of brain stress systems (corticotropin-
releasing factor, dynorphin, norepinephrine, hypocretin, vasopressin, glucocorticoids, and neuroimmune factors) in the
extended amygdala. Hyperkatifeia can extend into protracted abstinence and interact with learning processes in the
form of conditioned withdrawal to facilitate relapse to compulsive-like drug seeking. Compelling evidence indicates
that plasticity in the brain pain emotional systems is triggered by acute excessive drug intake and becomes sensitized
during the development of compulsive drug taking with repeated withdrawal. It then persists into protracted absti-
nence and contributes to the development and persistence of compulsive opioid-seeking behavior.
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OPIOID ADDICTION: HEURISTIC FRAMEWORK

A heuristic framework for opioid addiction consists of a
3-stage cycle—binge/intoxication, withdrawal/negative affect,
and preoccupation/anticipation—that represents dysregulation
in 3 functional domains (incentive salience and/or habits,
negative emotional states, and executive function, respec-
tively) and is mediated by 3 major neurocircuitry elements
(basal ganglia, extended amygdala, and prefrontal cortex,
respectively). Opioids are a classic drug of addiction, in which
an evolving pattern of use includes intense initial intoxication
that is associated with intravenous or smoked drug taking, the
development of profound tolerance, and the consequent
escalation of intake. Abstinence results in profound dysphoria,
physical discomfort, and somatic signs of withdrawal. Intense
preoccupation with obtaining opioids (craving) then develops,
often preceding somatic signs of withdrawal. This craving is
linked to stimuli that are associated with obtaining the drug
and stimuli that are associated with withdrawal and internal
and external states of stress. A pattern develops in which the
drug must be administered to avoid the severe dysphoria and
discomfort of abstinence. Thus, opioid addiction can be
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defined as a compulsion to seek and take a drug, a loss of
control in limiting intake, and the emergence of a negative
emotional state when access to the drug is prevented.

From a conceptual framework, excessive drug taking in the
binge/intoxication stage drives an allostatic-like process, in
which the break with reward homeostasis triggers compen-
satory responses in the reward and stress systems of the brain
to generate the withdrawal/negative affect stage and preoc-
cupation/anticipation stage (1). The 3 stages feed into one
another, becoming more intense and ultimately leading to the
pathological state known as addiction (1) (Figure 1). Particularly
with opioids, the termination of drug taking inevitably leads to
negative emotional states of acute and protracted withdrawal
in the withdrawal/negative affect stage, which generates a
second motivational drive from negative reinforcement. Pro-
tracted abstinence incorporates residual elements of negative
emotional states and cue and contextual craving to form the
preoccupation/anticipation stage. Opioid use disorder is now
considered a spectrum disorder as described by the DSM-5
(2), which provides a framework for the intensity of symp-
toms with regard to the number of symptoms that are
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Figure 1. Conceptual framework for neurobiolog-
ical bases of substance use disorders. ACC, anterior
cingulate cortex; BNST, bed nucleus of the stria
terminalis; CeA, central nucleus of the amygdala; DS,
dorsal striatum; dlPFC, dorsolateral prefrontal cor-
tex; GP, globus pallidus; HPC, hippocampus; NAC,
nucleus accumbens; OFC, orbitofrontal cortex; PAG,
periaqueductal gray; Thal, thalamus; vlPFC, ventro-
lateral prefrontal cortex; vmPFC, ventromedial pre-
frontal cortex. [Modified with permission from Koob
and Volkow (105).]
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presented, showing that an individual can enter the addiction
cycle at different stages. For example, with opioid use disor-
der, much like with other substance use disorders, individuals
may start opioid misuse with recreational use of the drug and
progress to the withdrawal/negative affect stage as negative
reinforcement evolves. However, opioids differ from many
other addictive substances because negative reinforcement
may be the starting point, via either self-medication or chronic
pain. The focus of this review is on the withdrawal/negative
affect stage, the relationship to emotional pain, and the
neurobiological circuits that are engaged to produce the
negative emotional states that drive negative reinforcement.

NEGATIVE REINFORCEMENT IN OPIOID ADDICTION

The negative reinforcement that is associated with compulsive
opioid seeking derives from the well-established framework of
opponent processes. Here, euphoria (a-process) that is pro-
duced by the opioid is followed by dysphoria (b-process) that
grows with repeated administration and that can be equated
with the development of withdrawal and dependence (see the
Supplement for details of opponent process theory). Devel-
opment of the b-process reflects the development of a nega-
tive emotional state in opposition to the hedonic effects
(a-process) of the opioid, including malaise, irritability, alex-
ithymia, anxiety, dysphoria, and subjective feelings of unease
and simply not feeling “hedonically normal,” all of which are also
withdrawal symptoms. This hypernegative emotional state,
termed hyperkatifeia (3), was proposed to worsen with repeated
experience, and sensitized hyperkatifeia was hypothesized to be
dissociable from somatic signs of withdrawal and major psy-
chiatric disorders. Here, negative reinforcement becomes the
source of motivation for drug seeking, in which the individual will
work to reduce, terminate, or prevent this sensitized negative
Biologica
emotional state. As a result, a greater amount and more frequent
use of the previously rewarding substance is needed to maintain
or approach euthymia.

Thus, repeated opioid intoxication and withdrawal lead to
repeated hypohedonia, hyperkatifeia, and hyperalgesia and more
pronounced behavioral responses to stress that the individual
misregulates by taking more drug (Figure 1, Supplemental
Figure S1, and the Supplement). Under this framework, sub-
stance use is compulsively escalated or renewed (in relapse) via
negative reinforcement mechanisms because it transiently pre-
vents or relieves the negative emotional symptoms of withdrawal
or hyperkatifeia, and this compulsive drug seeking defends a
hedonic set point that gradually gains allostatic load and shifts
from a homeostatic hedonic state to an allostatic hedonic state
(4) (see the Supplement for a definition of allostasis).

Opponent process–like negative emotional states have
been characterized in humans by acute and protracted absti-
nence from opioids (5–7), and similar results have been
observed in animal models with opioids (8). Dysphoric-like
responses in rodents, measured by elevations of brain stimu-
lation reward thresholds, accompany acute opioid withdrawal
(9,10). Perhaps a more compelling example of the allostatic-
like dysregulation of drug taking that results in hypohedonia
is the elevation of reward thresholds that is charted during the
course of the escalation of heroin intake in rats during
extended access to opioids (Supplemental Figure S2).

HYPERKATIFEIA: NEUROBIOLOGICAL BASES

Hyperalgesia and hyperkatifeia are well-documented symp-
toms of acute and protracted withdrawal from opioid drugs,
and both directly reflect opponent processes that have moti-
vational significance (see the Supplement). The motivational
power of these painful and negative emotional states in driving
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negative reinforcement requires further elucidation of the
neurobiological mechanisms.

A connectome imaging study in mice revealed a major in-
fluence of m opioid receptor gene (Oprm1) inactivation,
showing a dramatic change in aversion- and/or pain-related
connectivity rather than reward connectivity using a
hypothesis-free analysis of combined resting-state functional
magnetic resonance imaging diffusion tractography (11).
These results may reflect stronger inhibitory m opioid receptor
tone or a developmental influence on negative affect neuro-
circuits, at least under resting-state conditions. Predominant
alterations within reward/aversion pathways correlated with
major behavioral modifications in Oprm1 mutant mice with
regard to pain-, emotion-, and reward-related behaviors (12).
Examinations of alterations of hub status and direct statistical
intergroup comparisons indicated a predominant reshaping of
networks that are known to process information of negative
valence. These networks included such structures as the
periaqueductal gray (PAG), hippocampus, amygdala, cingulate
cortex, median raphe, and habenula (11).

Consistent with the connectome results, neurochemistry
and neurocircuitry studies have shown that neuroadaptations
that mediate hyperkatifeia have a focal point in the extended
amygdala. The extended amygdala comprises several basal
forebrain structures, including the bed nucleus of the stria
terminalis, the central nucleus of the amygdala, the sub-
lenticular substantia innominata, and a transition zone in the
medial part of the nucleus accumbens (e.g., shell) (13). Lesions
of the central nucleus of the amygdala blocked the develop-
ment of morphine withdrawal–induced conditioned place
aversion but had less of an effect on somatic signs of with-
drawal (14).

A conceptual framework that was adopted to explain the
neural systems that are argued to mediate hyperkatifeia and
drive the motivational component of opponent processes of
excessive opioid use involved the within-system down-
regulation of brain reward circuitry and between-system
recruitment of brain stress circuitry (15,16). A within-system
neuroadaptation was defined as a process by which the pri-
mary cellular response element to the drug within a given
neurochemical circuit itself adapts to neutralize the effects of
the drug. In contrast, between-system neuroadaptation was
defined as a circuitry change in which another circuit (i.e.,
stress or antireward circuit) is activated by a reward circuit.
Persistence of the opposing effects after removal of the drug is
reflected by the negative emotional withdrawal syndrome that
is described above.
Within-System Neuroadaptations

One source of within-system neuroadaptations involves ele-
ments of opioid receptor function that mediate tolerance to
opioids, and this tolerance would extend to the rewarding ef-
fects of the drug. G proteins that are activated through the m
opioid receptor modulate the activity of several second mes-
sengers and cellular effectors, which may generate both short-
term and long-term neuroadaptations that are relevant to
tolerance at the molecular and cellular levels. Other molecular
and/or cellular events, in addition to G protein signaling cas-
cades, contribute to m opioid receptor signaling, including
46 Biological Psychiatry January 1, 2020; 87:44–53 www.sobp.org/jou
receptor desensitization, receptor internalization, transcrip-
tional changes, and structural changes such as dendritic spine
remodeling (17–19), and tolerance at the cellular level may be
the sum of these multiple events (20).

At the neurocircuitry level, early studies showed that
precipitated opioid withdrawal was associated with decreases
in extracellular dopamine levels in the nucleus accumbens (21)
and mesolimbic dopamine system, with decreases in dopa-
mine neuron firing and extracellular dopamine levels during
opioid withdrawal (22,23) (Figure 2A). Chronic morphine
administration is also associated with a decrease in the size of
dopamine neurons in the ventral tegmental area and an in-
crease in the sensitivity to dopamine receptor antagonists.
These cellular changes that occur during opioid withdrawal are
accompanied by an increase in g-aminobutyric acid activity
and increase in metabotropic glutamate receptor sensitivity,
both of which decrease glutamate release in the ventral
tegmental area and lead to a decrease in dopamine cell firing
(24).

Human positron emission tomography studies found lower
baseline dopamine D2 receptor availability in the dorsal stria-
tum in opioid-dependent subjects compared with control
subjects (25). In a study that showed a decrease in D2 receptor
availability in the left caudate nucleus, D2 receptor availability
in the putamen was negatively correlated with years of opioid
use (26). One mechanism to explain the hypodopaminergic
state is that opioids trigger a cascade of molecular events that
involve cyclic adenosine monophosphate and ultimately acti-
vate dynorphin, particularly in the shell of the nucleus
accumbens (27,28).

The lateral habenula is a brain structure with connections to
the brain reward systems, and it plays a key role in mediating and
encoding aversive states (29) (Figure 2A; also see the
Supplement). Activation of the lateral habenula strongly inhibits
dopamine neurons in the ventral tegmental area, and thus the
regulation of dopamine activity in the ventral tegmental area by
the lateral habenula has been hypothesized to underlie aversive
effects of abused drugs (30) and, by extrapolation, aversive ef-
fects of drug withdrawal. Intralateral habenula administration of
KN-62, a specific inhibitor of calcium/calmodulin-dependent
protein kinase II, eliminated naloxone-precipitated conditioned
place aversion in morphine-dependent mice, a finding that is
consistent with the observation that chronic morphine use
induced the overexpression of calcium/calmodulin-dependent
protein kinase II in the lateral habenula (31). In humans, an in-
crease in habenula–striatum connectivity was observed in
opioid-using patients who exhibited withdrawal avoidance and
aversion (32).
Between-System Neuroadaptations

For between-system neuroadaptations, the recruitment of
brain stress systems, including corticotropin-releasing factor
(CRF), norepinephrine, and dynorphin, is a major key substrate
that is responsible for the aversive stimulus effects of opioid
withdrawal that drive compulsive-like opioid seeking (15)
(Figure 2B). Early work showed that the antagonism of CRF
receptors and noradrenergic receptors in the extended
amygdala blocked the aversive stimulus effects of opioid
withdrawal (33–35). The administration of a CRF1/CRF2
rnal
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Figure 2. Neural circuitry associated with the negative emotional state of the withdrawal/negative affect stage. (A) Extended amygdala and within-system
neuroadaptations. Note the loss of dopamine and opioid peptide function in ventral tegmental area–nucleus accumbens circuitry, with a hypothesized
contribution of the habenula that suppresses neuron activity in the ventral tegmental area (inset panel). (B) Extended amygdala and between-system neu-
roadaptations. Note the gain of stress neurotransmitter and neuromodulator function and loss of antistress neurotransmitter and neuromodulator function
throughout the neurocircuitry of the extended amygdala (inset panel). The extended amygdala is composed of several basal forebrain structures, including the
bed nucleus of the stria terminalis, the central nucleus of the amygdala, and possibly a transition area in the medial portion (shell) of the nucleus accumbens.
ACC, anterior cingulate cortex; BNST, bed nucleus of the stria terminalis; CeA, central nucleus of the amygdala; DA, dopamine; DS, dorsal striatum; dlPFC,
dorsolateral prefrontal cortex; GABA, g-aminobutyric acid; GP, globus pallidus; HPC, hippocampus; LDT, laterodorsal tegmentum; NAC, nucleus accumbens;
OFC, orbitofrontal cortex; PAG, periaqueductal gray; PPT, pedunculopontine tegmentum; Thal, thalamus; vlPFC, ventrolateral prefrontal cortex; vmPFC,
ventromedial prefrontal cortex; VTA, ventral tegmental area. [Adapted with permission from Koob (106) and George and Koob (107).]
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peptide receptor antagonist in the central nucleus of the
amygdala blocked precipitated conditioned place aversion that
was produced by opioid withdrawal (33). The blockade of
noradrenergic function in the bed nucleus of the stria terminalis
also blocked opioid withdrawal–induced place aversions
(34,35). These same neuropharmacological systems that are
implicated in the aversive effects of opioid withdrawal are also
implicated in compulsive drug taking and seeking that are
associated with extended-access intravenous self-administration
in animal models. Both CRF receptor antagonists and a1-
adrenergic receptor antagonists dose-dependently decreased
compulsive-like drug intake in rats with extended access to
opioids (36–38).

To date, no clinical studies have found efficacy of CRF1 re-
ceptor antagonists for the treatment of stress-related psychiatric
disorders, such as major depression, generalized anxiety, social
anxiety, or posttraumatic stress disorder (39,40). The findings of
a few limited human laboratory studies of alcohol use disorder
have also been negative (41). No double-blinded treatment study
for addiction has been conducted. An in-depth discussion of the
reason for such treatment failures is beyond the scope of this
review, but a possibility is that the efficacy of CRF1 receptor
antagonists for particular psychiatric disorders or symptoms,
patient subgroups, or circumstances in which pro–stress-like
CRF-CRF1 circuits are dynamically activated may need to be
tested (40,42).

Dynorphin is released by stressors, and blockade of the
dynorphin–k opioid receptor system blocks the aversive effects
of stress (43,44) and produces antidepressant-like effects in
animal models of depression (44). The dynorphin-induced acti-
vation of k opioid receptors decreases dopamine release in the
nucleus accumbens and produces conditioned place aversions
Biologica
(45). Perhaps more compelling, behavioral studies have consis-
tently demonstrated that k opioid receptor antagonists do not
block the acute rewarding (“euphoric-like”) effects of opioids but
do block the stress-induced potentiation of opioid reward, the
stress-induced reinstatement of opioid-seeking behavior, and the
escalation of drug consumption in long-access models (46)
(Supplemental Figure S3).

The activation of neuropeptide Y, oxytocin, and endo-
cannabinoid systems in the extended amygdala may buffer the
increase in stress reactivity that is associated with opioid
withdrawal (47–50). Thus, chronic opioid administration dys-
regulates the neuropharmacological systems that interface
with the reward and stress systems in the nucleus accumbens
and extended amygdala to lower reward function and increase
stress and pain. Prostress systems can drive hyperkatifeia, and
antistress systems can reverse hyperkatifeia.

A human imaging study of individuals who were dependent
on prescription opioids found striking alterations of amygdala
structure and connectivity (51). This study included a subgroup
of matched prescription opioid–dependent subjects who un-
derwent structural magnetic resonance imaging, diffusion
tensor imaging, and resting-state functional magnetic reso-
nance imaging. Compared with healthy control subjects, the
opioid-dependent subjects exhibited bilateral volumetric loss
in the amygdala, a significant decrease in anisotropy in efferent
and afferent pathways of the amygdala, and decreases in
functional connectivity in brain networks that involved the
amygdala, insula, and nucleus accumbens, including a
decrease in functional connectivity between the amygdala and
PAG (51).

One prominent output of the extended amygdala is the PAG
(52). The PAG is also well known to play a key role in
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processing pain via both the classic spinothalamic pain
pathway and the emotional parabrachial pain pathway via its
connections to the amygdala (53). Pain can drive motivated
behavior, in which pain and other aversive processes drive
avoidance and escape. The PAG also has long been associ-
ated with the classic precipitated morphine withdrawal syn-
drome that is produced in animals that are chronically treated
with morphine. The local administration of enkephalinase in-
hibitors in the PAG blocked naloxone-precipitated withdrawal
(54,55). One mechanism that may drive some of these neuro-
adaptations in the PAG involves neuroinflammatory responses.
The development of tolerance to morphine is paralleled by
increases in the gene expression of several proinflammatory
factors in the PAG, such as toll-like receptor-4, tumor necrosis
factor a, and interleukin-1b (56–58). The increase in proin-
flammatory activity results in a significant increase in excitatory
neurotransmission that is mediated by increases
in glutamatergic tone, which is hypothesized to actively
oppose the analgesic effect of morphine (57). Similarly, opioid
withdrawal is mediated by the activation of proinflammatory
systems in the PAG. Induction of the interleukin-4 gene (Il4)
with a recombinant vector blunted the morphine withdrawal
syndrome in mice (59). Microinjection of a herpes simplex virus
vector in the PAG to decrease tumor necrosis factor a before
the start of morphine treatment significantly reduced naloxone-
precipitated withdrawal in mice (60). Thus, the PAG mediates
hyperkatifeia and has been implicated in mediating aversive
prediction errors that are associated with fear (52)
(Supplement). In aversive learning, an aversive prediction
error occurs when the discrepancy between the predicted value
and the experienced value of the aversive state is worse than
expected. Whether the PAG is involved in aversive prediction
errors that are associated with hyperkatifeia in opioid with-
drawal remains to be determined.
NEUROCIRCUITRY INTERSECTION OF OPIOIDS,
PAIN, AND ADDICTION

A behavioral mechanism of action for opioids that is a unifying
common theme is their relief of pain and suffering, including
relief of negative emotional states (61). Opioids are recognized
as the most powerful and effective drugs for the relief of acute
pain in humans. However, opioids are significantly less effec-
tive against chronic pain, such as neuropathic pain, fibromy-
algia, or low-back pain. Tolerance to the analgesic effects of
opioids requires increasingly higher doses to sustain analgesia
(62,63). More importantly for the present thesis, opioids can
also relieve emotional pain, and this is one of the behavioral
mechanisms that is strongly implicated in driving the with-
drawal/negative affect stage of the addiction cycle. Individuals
who experienced or expressed physical abuse and violent
behavior described the ways in which opioids helped them feel
normal, calm, mellow, soothed, and relaxed (64).

Withdrawal from chronic opioid self-administration pro-
duces hyperalgesia (i.e., lower pain thresholds) (65,66). Pa-
tients who receive long-term opioid therapy for weeks to years
can develop unexpectedly abnormal pain and hyperalgesia on
withdrawal from opioid treatment (67). In humans, opioid
withdrawal can lower pain thresholds and exacerbate pain, and
heightened pain perception has long been observed in
48 Biological Psychiatry January 1, 2020; 87:44–53 www.sobp.org/jou
individuals with a history of opioid addiction (68,69). Patients
who are on methadone maintenance have low pain tolerance
(70), and pain is one of the main triggers of relapse to addiction
in such individuals (71). In a study of the interaction between
negative emotional states and withdrawal hyperalgesia,
subjects who were in either acute withdrawal (24–72 hours)
or protracted abstinence (average of 30 months) from opi-
oids exhibited decreases in pain thresholds and pain toler-
ance, measured by the ischemic pain submaximal tourniquet
procedure, and these effects were exacerbated by negative
emotional states (72). Individuals in all groups (i.e., nonusers,
ex-users, and withdrawn users) exhibited lower pain toler-
ance after viewing negative pictures compared with toler-
ance latencies that were observed after viewing positive and
neutral pictures (72). Acute opioid administration can pro-
duce hyperalgesia. Men who were not dependent on opioids
and who underwent an acute opioid physical dependence
challenge paradigm by receiving naloxone exhibited the
presence of hyperalgesia in response to experimental cold-
pressor pain (73).

In animal models, when the opioid is administered repeat-
edly (e.g., once daily for 2 weeks), a gradual and dose-
dependent decrease in nociceptive threshold is observed
that lasts for several weeks after drug administration (74,75). A
small dose of heroin that was otherwise ineffective in triggering
delayed hyperalgesia in non–heroin-treated rats enhanced pain
sensitivity for several days after a series of heroin injections,
suggesting the occurrence of pain sensitization. Thus, a
neuronal memory that is characterized by a vulnerable state
may remain long after complete washout of the drug and when
apparent equilibrium near the predrug state has been rees-
tablished. Such hyperalgesia has also been observed with a
single injection of heroin in rats (76).

Neurobiological mechanisms for opioid-induced hyper-
algesia include the activation of glutamatergic systems and
the same brain stress systems (e.g., CRF and dynorphin) that
are implicated in hyperkatifeia (see above). In an animal
model of long-lasting hyperalgesia after exposure to heroin,
a noncompetitive glutamate receptor antagonist reversed
hyperalgesia (76). A noncompetitive glutamate receptor
antagonist also prevented the long-lasting heroin-induced
enhancement of pain sensitivity and naloxone-precipitated
hyperalgesia in humans (77). Hyperalgesia in the tail flick
test that was associated with morphine withdrawal was
blocked by microinjections of a CRF1/CRF2 peptide receptor
antagonist in the central nucleus of the amygdala, without
affecting plasma corticosterone responses (78). Consistent
with this observation, hyperalgesia during withdrawal in an-
imals that developed compulsive-like responding with
extended access to heroin was blocked by the systemic
administration of a CRF1 receptor antagonist (38,79).
Dynorphin knockout mice exhibited a facilitated return to
normal nociceptive baselines after a peripheral nerve lesion
(80), suggesting a pronociceptive role for dynorphin in
chronic pain, in contrast to the antinociceptive effects of
acute administration of k opioid receptor agonist.

A link between hyperalgesia and hyperkatifeia can be found,
with a focus on CRF and dynorphin in the extended amygdala.
CRF in the amygdala, particularly in the central nucleus of the
amygdala, plays an important role in pain modulation and
rnal
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Figure 3. Allostatic framework for addiction to and withdrawal from opioid drugs, and relapse to opioid drug use. The diagram is based on “Laura’s pathway
to heroin addiction” from Evans and Cahill (103). A hypothetical scenario is provided about how the learned association of the relief of aversive states can lead
to the development of addiction and the key role of opioid dependence therein. [Modified with permission from Evans and Cahill (103).]
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pain-related affect (81). The blockade of CRF1 receptors in the
central nucleus of the amygdala inhibited pain- and anxiety-like
behaviors in an animal model of arthritic pain (82,83).

The dynorphin–k opioid receptor system is also engaged in
negative emotional states that are associated with chronic pain
(84–86). Evidence that supports this hypothesis includes
findings from studies of knockout mice, the neurocircuitry-
specific engagement of dynorphin neurons, and the neuro-
pharmacological blockade of k opioid receptors. The stimula-
tion of specifically dynorphin-containing neurons in the ventral
nucleus accumbens shell by selectively expressing
channelrhodopsin-2 in dynorphin-Cre1 mice decreased the
motivation to self-administer sucrose. The local infusion of
microgram amounts of the k opioid receptor antagonist nor-
binaltorphimine in the ventral nucleus accumbens shell
blocked the place aversion that was produced by inflammation
combined with the activation of ventral nucleus accumbens
shell dynorphin neurons (85,86). The authors of these two re-
ports argued that the in vivo recruitment of nucleus accum-
bens shell dynorphin neurons that act through k opioid
receptors can drive pain-induced negative affect (85,86). Thus,
there is a clear role for the dynorphin–k opioid receptor system
in modulating the interplay of pain, stress, and
reward processing. The high comorbidity between chronic
Biologica
pain, addiction, depression, and suicide provides a compelling
rationale for further study in this domain.
CONDITIONED WITHDRAWAL

The break with emotional homoeostasis, defined as hyper-
katifeia, does not end with acute withdrawal and can extend
into prolonged abstinence, such as with hypersensitivity to pain
as described above. Support for such a framework comes from
several sources: allostasis theory, negative affective networks,
and learned associations. Indeed, perturbations to the brain
reward and stress systems can engage learning systems to
leave a residual neuroadaptive trace that allows rapid relapse
even months and years after detoxification and abstinence.
Although craving in addiction is often linked to cues and con-
texts that are paired with the positive hedonic effects of the
drug, craving and drug seeking can also be elicited by cues and
contexts that are linked to withdrawal via conditioned with-
drawal (87). In a classic study, a previously neutral peppermint
smell (conditioned stimulus) that was paired with withdrawal
reactions (unconditioned response) elicited subjective and
physiological manifestations of the narcotic withdrawal syn-
drome (conditioned response). After numerous pairings of
the peppermint smell with precipitated withdrawal that was
l Psychiatry January 1, 2020; 87:44–53 www.sobp.org/journal 49
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produced by naloxone in methadone-maintained individuals,
the peppermint smell alone precipitated withdrawal (87).

Conditioned withdrawal has also been observed in animal
models using the conditioned place aversion paradigm (8) and
intravenous operant self-administration of opioids or other
rewards (88,89). In rats that were allowed 23-hour access to
heroin (Supplemental Figure S2), previously neutral stimuli
(odor and cue light) that were repeatedly paired with naloxone-
precipitated withdrawal produced conditioned withdrawal, re-
flected by elevations of intracranial self-stimulation thresholds
and an increase in heroin consumption (89) (Supplemental
Figure S4). Fos activation in the extended amygdala paral-
leled the conditioned place aversion response (90). Addition-
ally, bilateral inactivation of the basolateral amygdala (i.e., a
major input to the extended amygdala) blocked the develop-
ment of conditioned opioid withdrawal (91). The ability of a
tone-light stimulus that had been paired with precipitated
opioid withdrawal (conditioned stimulus) to suppress
responding for food was blocked by bilateral quinolinic acid–
induced lesions of the basolateral amygdala (91). Altogether,
these results suggest a key pathway from the basolateral
amygdala to the extended amygdala in mediating negative
valence-induced craving.

SEX DIFFERENCES

More men use and are addicted to opioids (92) and other drugs
of abuse (93). Nonetheless, clinical reports indicate that women
who become addicted to opioids progress through the stages
of addiction, from initial use to dependence, at a faster rate than
men (94). In animal models, female rodents generally acquire
morphine and heroin self-administration faster than male ro-
dents, and they exhibit higher motivation to self-administer
opioids (95–97). However, female subjects are less sensitive
to the analgesic effects of m opioid receptor agonists (98,99).
The physical signs of opioid withdrawal are more pronounced in
male mice than in female mice (100), although little or no work
has focused on preclinical studies of sex differences in animal
models of hyperkatifeia and negative reinforcement (97).

IMPLICATIONS FOR THE ETIOLOGY AND
TREATMENT OF OPIOID USE DISORDER

The thesis outlined herein is that knowledge of the neuro-
adaptations that occur within the framework of the withdrawal/
negative affect stage provides fertile ground for developing
new treatments for opioid use disorder. Chronic opioid
administration has numerous effects on neuropharmacological
systems that interface with the extended amygdala, a key
pathway that is associated with the withdrawal/negative affect
stage of the addiction cycle. Opioids act directly and indirectly
via g-aminobutyric acid and glutamate systems to activate
reward pathways. With excessive use, these same systems
undergo neuroadaptations with chronic opioid exposure that
lower reward function, increase stress function, and increase
the negative affect component of pain, all of which contribute
to hyperkatifeia. The argument is that these specific neuro-
circuitry dysregulations contribute to the links that have been
hypothesized to exist between the neural mechanisms that are
responsible for a hypersensitive negative emotional state
(hyperkatifeia) and opioid-induced hyperalgesia (3).
50 Biological Psychiatry January 1, 2020; 87:44–53 www.sobp.org/jou
As discussed above, opioid addiction is hypothesized to
move to compulsive drug seeking via negative reinforcement
mechanisms because opioid use transiently prevents or re-
lieves negative emotional symptoms or hyperkatifeia. This
compulsive drug seeking defends a hedonic set point that
gradually gains allostatic load and shifts from a homeostatic
hedonic state to an allostatic hedonic state (4). Others have
argued that one of two main determinants of drug “urges” is a
“negative affect” network (101). Such a negative affect network
is activated not only during withdrawal but also by conditioned
predictors of withdrawal (e.g., drug cues) and unappetitive
consequences (e.g., punishment, frustrative nonreward) or their
conditioned cues. In this model, escape from and the avoid-
ance of negative affect are powerful motives for compulsive
drug use (102). Evans and Cahill (103) argued that opioid
addiction is sustained by a learned association between opi-
oids and relief from an existing dysphoric state, a learned as-
sociation that is formed by negative reinforcement. They further
argued that later stressful events during protracted abstinence
can generalize to such a dysphoric state and produce recall that
opioid drugs can relieve such a negative state (103) (Figure 3).

A neglected area in the hyperkatifeia domain is the
development of medications and behavioral strategies that
target specifically the affective component of protracted
abstinence from opioids. As noted above, studies have re-
ported hypersensitivity to pain and discomfort with opioids
that can last for more than a year after detoxification.
Treatment must consider the dysregulation of pain and
stress systems during acute withdrawal and long into re-
covery. Based on preclinical studies, medications and
behavioral therapies that reset the hypothalamic-pituitary-
adrenal axis and/or CRF brain systems and return the
dynorphin–k opioid receptor system to homeostasis would
be promising new targets for medication development.

Additionally, cues that are paired with withdrawal can have
significantmotivational power in driving craving and relapse. Cues
that were associated with conditioned withdrawal activated the
extended amygdala and hypothalamic circuits in a preclinical
imaging study (104). Very little work has focused on the neurobi-
ology of conditioned withdrawal and the ways in which it may be
applied to the sustained treatment of opioid use disorder. The
focus on understanding the reward deficit and/or stress surfeit
component of the withdrawal/negative affect stage of opioid use
disorder can also informwhichbehavioral treatmentsmaybemore
effective in moderate to severe opioid use disorder. For example,
versions of cognitive behavioral therapy that address coping
mechanisms for stress and pain (physical and affective) may be
more important than refinements in contingency management.
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